Convergence of Sample Path Optimal Policies for Stochastic Dynamic Programming

نویسندگان

  • Michael C. Fu
  • Xing Jin
  • XING JIN
چکیده

We consider the solution of stochastic dynamic programs using sample path estimates. Applying the theory of large deviations, we derive probability error bounds associated with the convergence of the estimated optimal policy to the true optimal policy, for finite horizon problems. These bounds decay at an exponential rate, in contrast with the usual canonical (inverse) square root rate associated with estimation of the value (cost-to-go) function itself. These results have practical implications for Monte Carlo simulation-based solution approaches to stochastic dynamic programming problems where it is impractical to extract the explicit transition probabilities of the underlying system model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling and Decision-making on Deteriorating Production Systems using Stochastic Dynamic Programming Approach

This study aimed at presenting a method for formulating optimal production, repair and replacement policies. The system was based on the production rate of defective parts and machine repairs and then was set up to optimize maintenance activities and related costs. The machine is either repaired or replaced. The machine is changed completely in the replacement process, but the productio...

متن کامل

Dynamic Multi Period Production Planning Problem with Semi Markovian Variable Cost (TECHNICAL NOTE)

This paper develops a method for solving the single product multi-period production-planning problem, in which the production and the inventory costs of each period arc concave and backlogging is not permitted. It is also assumed that the unit variable cost of the production evolves according to a continuous time Markov process. We prove that this production-planning problem can be Stated as a ...

متن کامل

Stochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry

We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...

متن کامل

An Application of the Stochastic Optimal Control Algorithm (OPTCON) to the Public Sector Economy of Iran

In this paper we first describe the stochastic optimal control algorithm called ((OPTCON)). The algorithm minimizes an intertemporal objective loss function subject to a nonlinear dynamic system in order to achieve optimal value of control (or instrument) variables. Second as an application, we implemented the algorithm by the statistical programming system ((GAUSS)) to determine the optimal fi...

متن کامل

On sample size control in sample average approximations for solving smooth stochastic programs

We consider smooth stochastic programs and develop a discrete-time optimal-control problem for adaptively selecting sample sizes in a class of algorithms based on sample average approximations (SAA). The control problem aims to minimize the expected computational cost to obtain a near-optimal solution of a stochastic program and is solved approximately using dynamic programming. The optimal-con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005